Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Public Health ; 10: 1050673, 2022.
Article in English | MEDLINE | ID: covidwho-2242873

ABSTRACT

Background: After the initial outbreak in China (December 2019), the World Health Organization declared COVID-19 a pandemic on March 11th, 2020. This paper aims to describe the first 2 years of the pandemic in Mexico. Design and methods: This is a population-based longitudinal study. We analyzed data from the national COVID-19 registry to describe the evolution of the pandemic in terms of the number of confirmed cases, hospitalizations, deaths and reported symptoms in relation to health policies and circulating variants. We also carried out logistic regression to investigate the major risk factors for disease severity. Results: From March 2020 to March 2022, the coronavirus disease 2019 (COVID-19) pandemic in Mexico underwent four epidemic waves. Out of 5,702,143 confirmed cases, 680,063 were hospitalized (11.9%), and 324,436 (5.7%) died. Even if there was no difference in susceptibility by gender, males had a higher risk of death (CFP: 7.3 vs. 4.2%) and hospital admission risk (HP: 14.4 vs. 9.5%). Severity increased with age. With respect to younger ages (0-17 years), the 60+ years or older group reached adjusted odds ratios of 9.63 in the case of admission and 53.05 (95% CI: 27.94-118.62) in the case of death. The presence of any comorbidity more than doubled the odds ratio, with hypertension-diabetes as the riskiest combination. While the wave peaks increased over time, the odds ratios for developing severe disease (waves 2, 3, and 4 to wave 1) decreased to 0.15 (95% CI: 0.12-0.18) in the fourth wave. Conclusion: The health policy promoted by the Mexican government decreased hospitalizations and deaths, particularly among older adults with the highest risk of admission and death. Comorbidities augment the risk of developing severe illness, which is shown to rise by double in the Mexican population, particularly for those reported with hypertension-diabetes. Factors such as the decrease in the severity of the SARS-CoV2 variants, changes in symptomatology, and advances in the management of patients, vaccination, and treatments influenced the decrease in mortality and hospitalizations.


Subject(s)
COVID-19 , Diabetes Mellitus , Hypertension , Male , Humans , Aged , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Longitudinal Studies , Mexico/epidemiology , Follow-Up Studies , RNA, Viral , Diabetes Mellitus/epidemiology , Hypertension/epidemiology
2.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-2115551

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/genetics
3.
BMC Infect Dis ; 22(1): 792, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2079396

ABSTRACT

BACKGROUND: SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized. METHODS: In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. RESULTS: Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. CONCLUSIONS: Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis.


Subject(s)
COVID-19 , Coinfection , Viruses , Humans , SARS-CoV-2/genetics , Coinfection/epidemiology , Viruses/genetics , DNA, Circular , Severity of Illness Index
4.
Food Environ Virol ; 14(2): 199-211, 2022 06.
Article in English | MEDLINE | ID: covidwho-1877976

ABSTRACT

The COVID-19 pandemic has been monitored by applying different strategies, including SARS-CoV-2 detection with clinical testing or through wastewater-based epidemiology (WBE). We used the latter approach to follow SARS-CoV-2 dispersion in Tapachula city, located in Mexico's tropical southern border region. Tapachula is a dynamic entry point for people seeking asylum in Mexico or traveling to the USA. Clinical testing facilities for SARS-CoV-2 monitoring are limited in the city. A total of eighty water samples were collected from urban and suburban rivers and sewage and a wastewater treatment plant over 4 months in Tapachula. We concentrated viral particles with a PEG-8000-based method, performed RNA extraction, and detected SARS-CoV-2 particles through RT-PCR. We considered the pepper mild mottle virus as a fecal water pollution biomarker and analytical control. SARS-CoV-2 viral loads (N1 and N2 markers) were quantified and correlated with official regional statistics of COVID-19 bed occupancy and confirmed cases (r > 91%). Our results concluded that WBE proved a valuable tool for tracing and tracking the COVID-19 pandemic in tropical countries with similar water temperatures (21-29 °C). Monitoring SARS-CoV-2 through urban and suburban river water sampling would be helpful in places lacking a wastewater treatment plant or water bodies with sewage discharges.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mexico/epidemiology , Pandemics , RNA, Viral/genetics , Rivers , SARS-CoV-2/genetics , Sewage , Wastewater , Water
5.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1869819

ABSTRACT

In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mexico/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/genetics
6.
Microbiol Spectr ; 10(1): e0124921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1622003

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has shown a wide spectrum of clinical manifestations ranging from asymptomatic infections to severe disease and death. Pre-existing medical conditions and age have been mainly linked to the development of severe disease; however, the potential association of viral genetic characteristics with different clinical conditions remains unclear. SARS-CoV-2 variants with increased transmissibility were detected early in the pandemics, and several variants with potential relevance for public health are currently circulating around the world. In this study, we characterized 57 complete SARS-CoV-2 genomes during the exponential growth phase of the early epidemiological curve in Mexico, in April 2020. Patients were categorized under distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors, the patients were less than 60 years old and with no diagnosed comorbidities A trait-association phylogenomic approach was used to explore genotype-phenotype associations, represented by the co-occurrence of mutations, disease severity outcome categories, and clusters of Mexican sequences. Phylogenetic results revealed a higher genomic diversity compared to the initial viruses detected during the early stage of the local epidemic. We identified a total of 90 single nucleotide variants compared to the Wuhan-Hu-1 genome, including 54 nonsynonymous mutations. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors. IMPORTANCE The genetic association of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with different clinical conditions remains unclear and needs further investigation. In this study, we characterized 57 complete SARS-CoV-2 genomes from patients in Mexico with distinct disease severity outcomes: mild disease or ambulatory care, severe disease or hospitalized, and deceased. To reduce bias related to risk factors the patients were less than 60 years old and with no diagnosed comorbidities. We did not find evidence for the co-occurrence of mutations associated with specific disease outcomes. Therefore, in the group of patients studied, disease severity was likely mainly driven by the host genetic background and other demographic factors.


Subject(s)
COVID-19/epidemiology , Genome, Viral , SARS-CoV-2/genetics , Adult , Age Factors , Ambulatory Care/statistics & numerical data , COVID-19/complications , COVID-19/mortality , Cluster Analysis , Female , Genotype , Hospitalization/statistics & numerical data , Humans , Male , Mexico/epidemiology , Middle Aged , Mutation , Phenotype , Phylogeny , Preexisting Condition Coverage/statistics & numerical data , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Young Adult
7.
Viruses ; 13(11)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1488756

ABSTRACT

During the first year of the SARS-CoV-2 pandemic in Mexico, more than two million people were infected. In this study, we analyzed full genome sequences from 27 February 2020 to 28 February 2021 to characterize the geographical and temporal distribution of SARS-CoV-2 lineages and identify the most common circulating lineages during this period. We defined six different geographical regions with particular dynamics of lineage circulation. The Northeast and Northwest regions were the ones that exhibited the highest lineage diversity, while the Central south and South/Southeast regions presented less diversity with predominance of a certain lineage. Additionally, by late February 2021, lineage B.1.1.519 represented more than 89% of all circulating lineages in the country.


Subject(s)
COVID-19/virology , Genetic Variation , SARS-CoV-2/genetics , COVID-19/epidemiology , Evolution, Molecular , Genetic Testing , Genome, Viral , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/classification , Whole Genome Sequencing
8.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375645

ABSTRACT

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral/genetics , Humans , Mexico/epidemiology , Mutation , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
9.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: covidwho-639244

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to enabling implementation of effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage A/G, containing mostly sequences from North America, and lineage B/S, containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized 14 independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represented local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described for the country. Within this local transmission cluster, we also identified an H49Y amino acid change in the Spike protein. This mutation represents a homoplasy occurring independently through time and space and may function as a molecular marker to follow any further spread of these viral variants throughout the country. Our results provide a general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts.IMPORTANCE Understanding the introduction, spread, and establishment of SARS-CoV-2 within distinct human populations as well as the evolution of the pandemics is crucial to implement effective control strategies. In this work, we report that the initial virus strains introduced in Mexico came from Europe and the United States and that the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains with a H49Y mutation in the Spike protein, which could be further used as a molecular marker to follow viral spread within the country and the region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genetic Variation , Genome, Viral , Genomics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Amino Acid Substitution , Betacoronavirus/classification , COVID-19 , Computational Biology/methods , Coronavirus Infections/transmission , Genomics/methods , Humans , Mexico/epidemiology , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/transmission , SARS-CoV-2
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.27.120402

ABSTRACT

The COVID-19 pandemic has affected most countries in the world. Studying the evolution and transmission patterns in different countries is crucial to implement effective strategies for disease control and prevention. In this work, we present the full genome sequence for 17 SARS-CoV-2 isolates corresponding to the earliest sampled cases in Mexico. Global and local phylogenomics, coupled with mutational analysis, consistently revealed that these viral sequences are distributed within 2 known lineages, the SARS-CoV-2 lineage A/G, containing mostly sequences from North America, and the lineage B/S containing mainly sequences from Europe. Based on the exposure history of the cases and on the phylogenomic analysis, we characterized fourteen independent introduction events. Additionally, three cases with no travel history were identified. We found evidence that two of these cases represent local transmission cases occurring in Mexico during mid-March 2020, denoting the earliest events described in the country. Within this Mexican cluster, we also identified an H49Y amino acid change in the spike protein. This mutation is a homoplasy occurring independently through time and space, and may function as a molecular marker to follow on any further spread of these viral variants throughout the country. Our results depict the general picture of the SARS-CoV-2 variants introduced at the beginning of the outbreak in Mexico, setting the foundation for future surveillance efforts. This work is the result of the collaboration of five institutions into one research consortium: three public health institutes and two universities. From the beginning of this work, it was agreed that the experimental leader of each institution would share the first authorship. Those were the criteria followed to assign first co-first authorship in this manuscript. The order of the other authors was randomly assigned. IMPORTANCEUnderstanding the introduction, spread and establishment of SARS-CoV-2 within distinct human populations is crucial to implement effective control strategies as well as the evolution of the pandemics. In this work, we describe that the initial virus strains introduced in Mexico came from Europe and the United States and the virus was circulating locally in the country as early as mid-March. We also found evidence for early local transmission of strains having the mutation H49Y in the Spike protein, that could be further used as a molecular marker to follow viral spread within the country and the region.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL